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Abstract Introduction: The potential of intra-individual cognitive variability (IICV) to predict incident mild
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cognitive impairment (MCI) or Alzheimer’s disease (AD) was examined and compared to well-
established neuroimaging and genetic predictors.
Methods: IICV was estimated using four neuropsychological measures for n 5 1324 Alzheimer’s
Disease Neuroimaging Initiative (ADNI) participants who were cognitively healthy or diagnosed
with MCI at baseline. IICV was used to predict time to incident MCI or AD, and compared to hip-
pocampal volume loss and APOE ε4 status via survival analysis.
Results: In survival analyses, controlling for age, education, baseline diagonosis, and APOE ε4 sta-
tus, likelihood ratio tests indicate that IICV is associated with time to cognitive status change in the
full sample (P , .0001), and when the sample was restricted to individuals with MCI at baseline
(P , .0001).
Discussion: These findings suggest IICV may be a low-cost, noninvasive alternative to traditional
AD biomarkers.
Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Keywords: Cognitive variability; Cognitive biomarker; Biomarker; Alzheimer’s disease; Mild cognitive impairment; MCI;
Alzheimer’s disease neuroimaging initiative; ADNI
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1. Introduction

The prevalence of Alzheimer’s disease (AD) is rising,
creating an urgency to develop effective interventions
[1,2]. Current strategies include: (1) intervention during
the protracted presymptomatic or preclinical stages; and
(2) development of practical and effective means to
prevent the disease-associated suffering and untenable costs.
A prevention-focused approach necessitates the identifica-
tion of biological indicators of disease process, that is, bio-
markers [3,4].
. This is an open access article under the CC BY-NC-ND license (http://
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Major efforts, including the Alzheimer’s Disease Neuroi-
maging Initiative [5] (ADNI) and the Australian Imaging,
Biomarkers and Lifestyle [6] (AIBL) Study of Aging, have
expanded our understanding of preclinical and subclinical
stages of AD and what biomarkers might be used to detect
disease processes well before the onset of clinical symptoms.
The most promising biomarkers are obtained from cerebro-
spinal fluid and brain imaging [7]. However, given the diffi-
culties in disseminating collection methods outside of
research centers, and the arduous and invasive nature of
some collection procedures, there is a desire to develop
noninvasive, convenient markers [8,9]. The development of
a cognitive marker, once established and validated, would
offer an alternative for individuals unable or unwilling to
submit to the collection of traditional biomarkers.

One such proposed cognitive marker, intra-individual
cognitive variability (IICV), estimates variability between
cognitive domains measured at one time-point. Overall, re-
searchers have used two conceptual methods to investigate
the prognostic value of cognitive variability. The first
method being an examination of variability across domains
at one time (dispersion) [10–14], and the second being
variability across trials (inconsistency) administered either
in one session or over time [15–20] or both dispersion and
inconsistency [17,19].

Holtzer et al. [10] and many others [13,14,20] have
examined the usefulness of a dispersion-based IICV to pre-
dict cognitive decline and incident AD. This approach is not
new. For example, significant disparity between verbal and
performance intelligence quotients (IQs) is a long-
established correlate with underlying neuropathology
[21,22]. In Holtzer et al. [10], IICV was estimated as the de-
gree to which an individual’s test scores differed from their
mean standardized test performance. The investigators
found greater variability in performance (dispersion) was
associated with increased risk for dementia a decade later.
This suggested IICV, like traditional biomarkers, might co-
occur with preclinical brain alterations.

We hypothesized that IICV would predict incident AD
and mild cognitive impairment (MCI), and that IICV would
demonstrate strong criterion validity, estimated by
comparing IICV with an established neuroimaging
biomarker, hippocampal volume loss (HVL), and with apoli-
poprotein ε4 allele (APOE ε4) a genetic risk marker. Our
overall goal was to explore the utility of IICV as a potential
marker of preclinical cognitive changes and examine
whether baseline IICV predicted subsequent incident cogni-
tive endpoints, including MCI and AD.
2. Methods

2.1. Study design

Using an ex-post facto design and using an estimate of
IICV used by Holtzer et al. [10] as our primary predictor,
we examined the association of IICV and conversion to
MCI or AD in an ADNI sample, including adults who
were cognitively healthy or diagnosed with MCI at baseline.
We repeated our analyses with an MCI sub-sample. Finally,
we examined the contribution of IICVas a predictor of inci-
dent MCI and AD when HVL and a genetic risk factor,
APOE ε4 status, were also included in the models.

2.2. ADNI

Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu). ADNI was launched
in 2003 as a public-private partnership, led by PI Michael
W. Weiner, MD. The primary goal of ADNI has been to
test whether serial magnetic resonance imaging (MRI), posi-
tron emission tomography, other biological markers, and
clinical and neuropsychological assessment can be com-
bined to measure the progression of MCI and early AD
(adni-info.org [23]).

2.3. Participants

Data were collected at ADNI study centers and clinics
across the United States and Canada from three ADNI fund-
ing cycles (ADNI 1, ADNI 2, and ADNI GO) [5,24,25].
ADNI eligibility criteria included the following: age 55 to
90 years; English or Spanish language speakers; no
diagnosis of depression; and baseline diagnosis of early
AD, MCI, or cognitively normal (CN). Cognitive status
was confirmed with designated cut off scores for the
Clinical Dementia Rating Scale, mini-mental state examina-
tion, and Wechsler Memory Scale Logical Memory II. A
complete account of ADNI exclusion criteria can be found
at www.adni-info.org [23]. Evaluations were repeated every
6 months (ranging from 6 to 72 months), with a mean total
follow-up time of 30.81 months (SD 5 23.85). The results
of cognitive assessments, physical examinations, and MRI
scans were considered in determining diagnostic status
[24,25]. Supplementary Material describes how our primary
outcome, diagnostic conversion was determined.

Before application of exclusion criteria in our study, the
total subject pool included 1729 participants. We excluded
subjects if they completed fewer than two visits, had incom-
plete or missing neuropsychological data, or carried a diag-
nosis of AD at baseline. After exclusionary criteria were
applied, 1324 participants remained in the sample (see
Fig. 1). For the MCI subgroup analyses, individuals who
were CN at baseline were excluded, resulting in a sample
of 825 individuals.

2.4. Estimate of cognitive variability

We sampled the following cognitive domains to deter-
mine IICV: Attention, processing speed, executive func-
tioning, working memory, and verbal memory. In total,
four index scores from three tests were used to calculate par-
ticipants’ IICV score. Specific indices included: Rey

http://adni.loni.usc.edu
http://adni-info.org
http://www.adni-info.org


Fig. 1. CONSORT diagram. The terms ADNI 1, ADNI GO, and ADNI 2 each refers to groups of participants whowere compiled into one group and included in

the study from different funding cycles of the Alzheimer’s disease neuroimaging initiative abbreviations. The term converters are those who were noted as

changing in diagnosis from either cognitively normal (CN) or mild cognitive impairment (MCI) to MCI or Alzheimer’s disease (AD) over the course of the

study. Nonconverters are those who did not change in diagnosis over the course of the study.
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Auditory Verbal Learning Test, Total of Learning Trials,
American National Adult Reading Test (ANART), and Trail
Making Test (TMT) A and B. Because lower scores on TMT
A and B are indicative of better functioning (faster perfor-
mance), scores were reversed before z transforming them.

The single time-point IICV index was calculated per a
published algorithm [10]. Briefly, individual test scores
were standardized using score distributions based on the
sample obtained after inclusion and exclusion criteria were
applied (n 5 1324). For each participant, individual test
z-transformed scores were compared to their mean test
z-score, resulting in a summation of cross-test variability.
Consistency between test scores, regardless of value, will
demonstrate low levels of IICV, whereas extreme differences
between test scores will result in high IICV.

IICV was examined both as a continuous and categorical
variable. To derive categories of IICV, the continuum of
IICV scores was divided into tertiles representing low
IICV (0.0415–0.4955, n 5 437), moderate IICV (0.4956–
0.7876, n 5 437), and high IICV (0.7877–3.732, n 5 437).
2.5. Hippocampal volume loss

Measurements of hippocampal volume were conducted
per ADNI protocols [25]. HVL represented the absolute dif-
ference between bilateral baseline volume measurement and
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the measurement occurring closest to time of conversion, if
subject converted, or at the last available measurement if
subject did not convert. The value was divided by time be-
tween measurements. This rate of volume loss was divided
by baseline intracranial volume to adjust for individual dif-
ferences. Thus, in models presented here, HVL represents an
estimate of the proportional rate of HVL adjusted for intra-
cranial volume.
Table 1

Participant characteristics

Analytic sample

CN subgroup

n 5 499

MCI subgroup

n 5 825

Total sample

N 5 1324

Mean age at baseline,

y (SD)

74.43 (5.85) 73.20 (7.60) 73.66 (7.01)

Women, n (%) 255 (51.10) 334 (40.48) 589 (44.49)

Education years (SD) 16.38 (2.69) 15.92 (2.86) 16.09 (2.80)

APOE ε4 positive, n (%) 140 (28.06) 424 (51.39) 564 (42.59)

Race

African American, n (%) 32 (6.41) 24 (2.91) 56 (4.23)

American Indian/Alaskan

Native, n (%)

1 (0.20) 2 (0.24) 3 (0.23)

Asian American, n (%) 9 (1.80) 14 (1.69) 23 (1.74)

Native Hawaiian/Pacific

Islander, n (%)

0 (0.00) 1 (0.12) 1 (0.08)

White, n (%) 452 (90.58) 774 (93.81) 1226 (92.59)

More than one, n (%) 5 (0.1.00) 7 (0.85) 12 (0.91)

Unknown, n (%) 0 (0.00) 3 (0.36) 3 (0.23)

Ethnicity

Non-Hispanic, n (%) 477 (95.59) 644 (78.1) 1121 (84.67)

Hispanic, n (%) 16 (3.20) 18 (2.18) 34 (2.57)

Unknown, n (%) 4 (0.80) 3 (0.36) 7 (0.53)

Final diagnosis

Cognitively healthy,

n (%)

424 (84.97) 39 (4.73) 463 (34.96)

MCI, n (%) 63 (12.63) 507 (61.5) 570 (43.05)

AD, n (%) 12 (2.40) 279 (33.8) 291 (21.97)

Diagnostic converters, n (%) 69 (13.83) 276 (33.45) 345 (26.05)
2.6. Statistical analysis

Baseline demographic characteristics of converters and
nonconverters were compared using t tests for continuous
variables and chi-square tests for categorical variables, using
SPSS Statistics for Windows, version 23.0. Cox proportional
hazard survival models were used to investigate associations
between IICV and time-to-conversion, controlling for age,
education, APOE ε4 status, stratifying on baseline diagnosis
(MCI or CN), and using a likelihood ratio test (LRT)
comparing survival models with and without IICV. IICV ter-
tile survival curves were estimated by including tertiles as
the only covariate in the model. To investigate relative per-
formance of IICV versus APOE ε4 status and HVL, two
methods were used. First, concordance increases over a
“base” survival model (age, education, and stratified base-
line diagnosis) was examined when adding IICV, APOE ε4
status, or HVL. Second, in a model including all the
“base” items, regression coefficient estimates were
compared. Survival model analyses were conducted using
R for Windows, version 3.2.3, and “survival” package,
version 2.38–3.

The above analyses were performed for both the full
group and an MCI subgroup. This was done to investigate
if the association between IICV and conversion was mark-
edly different when the sample was restricted to a subgroup
(MCI). Additionally, all analyses were performed for both
continuous variables of IICV and HVL, and tertiles of
IICV and HVL, to assess effects of discretizing these vari-
ables. For continuous IICV and HVL, both were standard-
ized (mean of 0, standard deviation of 1) before inclusion
into models.

To support assumptions of proportionality, the MCI-
subgroup survival models incorporated education as a
discrete covariate with three categories:,12 years (category
1), 12 years to,16 years (category 2), and �16 years (cate-
gory 3). In survival models with both MCI and CN, educa-
tion was included as a continuous covariate. Given
concern for nonproportionality in models with HVL tertiles,
analyses focused on models where IICV and HVL were
continuous covariates. Both continuous and tertiles of
IICV and conformed well to proportionality assumptions.
Diagnostic reverters, n (%) 1 (0.20) 51 (6.18) 52 (3.93)

Abbreviations: AD, Alzheimer’s disease; MCI, mild cognitive impair-

ment; APOE, apolipoprotein E.

NOTE. Percentiles were calculated using the sample size for that group

(i.e., CN, MCI, or Total Sample).
3. Results

For all participants, mean age at baseline was 73.66 (stan-
dard deviation [SD] 5 7.01). Of the total, 589 were women
(44.49%). Average education was 16.09 years (SD 5 2.80).
See Table 1. Of the individuals for whom e4 status was avail-
able (n5 1320), 564 (42.72%) were APOE ε4 positive.Most
participants were white, n 5 1226 (92.60%) and non-
Hispanic n5 1121 (96.5%). Of the n5 499 CN participants,
n5 430 (86.17%) were nonconverters and n5 69 (13.83%)
converted diagnostically (n5 12 to AD). Of the 825 subjects
with MCI, n 5 507 (61.5%) remained MCI, and n 5 279
(33.8%) converted to a diagnosis of AD. See Table 2 for de-
mographic information categorized by IICV tertile.

Product-limit survival curve estimates comparing time to
conversion between IICV tertiles for individuals who were
CN or diagnosed with MCI at baseline (n 5 1311) revealed
that the group with the smallest magnitude of IICV had an
estimated median survival time .96 months (CI unavai-
lable). Individuals in a moderate IICV range had an esti-
mated median survival time of .96 months also (95%
lower CI limit 84 months; upper limit unavailable). Individ-
uals with the highest degree of IICV had an estimated me-
dian survival time of 48 months (95% CI, 36–72 months).
Survival times among the IICV tertiles differed as indicated
by a log-rank test (c2 5 71, df 5 2, P , .0001). Fig. 2 por-
trays product-limit survival estimate curves for the full
group analysis. LRTs were used to examine the association
of survival time with the covariates education and age after



Table 2

Participant characteristics by tertile of IICV

Lowest

IICV tertile,

n 5 437

Middle

IICV tertile,

n 5 437

Highest

IICV tertile,

n 5 437

Education, y (SD) 16.59 (2.52) 16.09 (2.80) 16.09 (2.80)

Mean age at baseline, n (SD) 72.64 (7.02) 73.66 (7.01) 73.66 (7.01)

Women, n (%) 205 (46.91) 198 (45.03) 180 (41.18)

APOE ε4 positive, n (%) 167 (38.21) 187 (42.79) 207 (47.36)

Baseline diagnosis

Cognitively healthy, n (%) 201 (45.99) 168 (38.44) 127 (29.06)

MCI, n (%) 236 (54.00) 269 (61.55) 310 (70.93)

Abbreviations: MCI, mild cognitive impairment; APOE, apolipoprotein

e4; IICV, intra-individual cognitive variability.

NOTE. Total n 5 1311 across tertiles. Percentiles were calculated using

the sample size in each tertile (n 5 437).

Fig. 3. Survival model including individuals whowere diagnosed withMCI

at baseline.
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accounting for continuous IICVand APOE ε4 status. Educa-
tion (c2 5 0.0004, df 5 1, P 5 .9814) was not statistically
significant, whereas age (c2 5 5.892, df 5 1, P 5 .0152)
and IICV (c2 5 42.6, df 5 1, P , .0001) both were statisti-
cally significant.

We found similar results when the survival analysis was
repeated in a sample restricted to individuals with MCI at
baseline. Survival analysis revealed that for this subgroup,
participants with the lowest level of IICV had an estimated
median survival time .96 months (95% lower CI limit:
84 months, upper limit unavailable); those with a moderate
level of IICV had an estimated median of 72 months (95%
lower CI limit: 48 months, upper limit unavailable); and sub-
jects with the highest variability index had an estimated me-
dian of 36 months (95% CI, 36–48 months). Survival times
between IICV tertiles were statistically different, (c25 67.6,
df5 2, P, .0001) by a log-rank test. See product-limit sur-
vival estimate curve in Fig. 3. In addition, LRTs showed that
age (c2 5 3.6305, df 5 1, P 5 .1668) and education
Fig. 2. Survival model including individuals who were cognitively healthy

or diagnosed with MCI at baseline.
(c2 5 0.3714, df 5 2, P 5 .8305) were not statistically sig-
nificant in theMCI subgroup after accounting for continuous
IICV and APOE ε4 status; IICV (c2 5 49.3, df 5 1,
P , .0001) remained significant.

We examined how predictive IICV is after accounting for
all other variables for the full sample. IICV was significantly
associated with conversion. The hazard ratio (HR) for 1 stan-
dard deviation (SD) increase in IICV is 1.20 (95% CI, 1.08–
1.35; P 5 .0010), compared to a HR for a 1 SD increase in
HVL of 1.97 (95% CI, 1.72–2.26; P , .0001), and a HR
of 1.83 (95% CI, 1.37–2.46; P 5 .0005) for APOE ε4 posi-
tive status compared to negative. The “base” model for the
full group has a concordance of 0.542. In comparison, add-
ing continuous IICV to the base in a separate model in-
creases concordance to 0.645, adding continuous HVL to
the base as a separate model instead increased it to 0.714,
and adding APOE ε4 status to the base model increased
concordance to 0.637. Table 3 includes beta weights, HRs,
and CIs for IICV tertile, HVL tertile, and APOE ε4 status.

An examination of a subgroup whose baseline diagnosis
was MCI revealed similar findings when all variables were
entered into the model simultaneously. The HR for 1 SD in-
crease in IICV was 1.21 (CI, 1.08–1.36; P 5 .0015)
compared to HR for 1 SD increase in HVL 5 1.99 (CI,
1.73–2.29, P , .0001), and positive APOE ε4 status HR of
1.78 (CI, 1.28–2.48, P 5 .0007). All were strongly associ-
ated with incident AD. The “base” model for the MCI sub-
group’s concordance was 0.526. In comparison, adding
continuous IICV to the base model increased concordance
to 0.663; adding continuous HVL to the base model instead
increased it to 0.732; and adding APOE ε4 status to the base
model instead increased it to 0.636. See Table 3 for beta
weights, HRs, and CIs for the model restricted to individuals
whose initial diagnosis wasMCI. All analyses were conduct-
ed with IICV included as a categorical variable and a contin-
uous variable. Results were highly similar in either case.
Discrete variable results are provided in Supplementary
Table 1.



Table 3

Point estimates and confidence intervals of hazard ratios (for full sample group model and for MCI subgroup model)

Variable Hazard ratio point estimate 95% confidence interval (lower) 95% confidence interval (upper)

Full group model, including IICV and HVL as standardized continuous variables. APOE ε4 status, age, education, and baseline diagnosis

IICV (increase of 1 SD) 1.20 1.08 1.35

HVL (increase of 1 SD) 1.97 1.72 2.26

APOE ε4 positive (vs negative) 1.83 1.37 2.46

Analytic sample restricted to subjects with MCI at baseline including IICV, HVL, APOE ε4 status, age, and education

IICV (increase of 1 SD) 1.21 1.08 1.36

HVL (increase of 1 SD) 1.99 1.73 2.29

APOE ε4 positive (vs negative) 1.78 1.28 2.48

Abbreviations: MCI, mild cognitive impairment; IICV, intra-individual cognitive variability; HVL, hippocampal volume loss.

NOTE. Full group model denotes all participants with either CN or MCI at baseline. “Base” survival model included age, education, and stratified baseline

diagnosis. Additional models added IICV, APOE ε4 status, or HVL to the “base”.
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4. Discussion

Overall, we found IICVestimates obtained from a single
evaluation predicted incident MCI and AD in a large sample
of well-characterized older adults enrolled in ADNI studies.
Specifically, we found individuals exhibiting the highest
level of variability in performance on three neuropsycholog-
ical measures (IICV) demonstrated shorter times to conver-
sion in cognitive status compared to individuals in the lowest
tertile of variability. Differences in conversion rates emerged
approximately 30 months after initial testing and remained
evident through the last available observation, approxi-
mately 5 years after IICV was measured at baseline. Log-
rank survival analyses indicated that after accounting for
age, education, HVL, and APOE ε4 status, the association
between IICV and time to conversion remained statistically
significant. Altogether, these data provide support for this
practical and noninvasive cognitive AD marker.

At present, researchers rely on resource-intense bio-
markers, which are well validated but invasive [26,27]. For
example, amyloid beta 1–42 (Ab1–42), total tau protein (t-
tau) and phosphorylated tau (P-tau) are robust biomarkers
of disease pathology and clinical course [28,29]. These
predictors can only be obtained with a lumbar puncture
(LP) or neuroimaging of cerebral amyloid plaques,
requiring injection of a radioactive compound, and access
to unique scanning expertise [30]. At minimum, other bio-
markers entail specialized neuroimaging and often require
longitudinal follow-up [8,9]. For example, MRI
measurement of HVL is highly accurate in predicting
conversion from MCI to AD [31,32]; however, volume
loss can only be measured with repeated evaluations.
Altogether, traditional AD biomarkers are inarguably
important, but prohibitively expensive; often dependent on
repeated evaluations; contraindicated for some subjects
[33]; and cumbersome to implement, especially in nonaca-
demic centers. Data from the present study suggest that
IICV is among the possible utilitarian alternatives to tradi-
tional biomarkers.

When determining which neuropsychological indices to
include in our IICV estimate, care was taken to detect
expected dissociations between fluid intelligence
(e.g., executive function) and crystallized intelligence
(e.g., semantic knowledge), and early impairments in
hippocampal-based learning to maximize the assessment
of patterns relevant for AD. For example, the ANART re-
flects crystallized intelligence, and is typically stable with
aging and in the presence of early to mid-stage disease
[34]. In contrast, the AVLT, a measure of verbal memory,
is sensitive to hippocampal-based learning, reflecting a
very early cognitive change in AD [35,36]. Although
Salthouse and Soubelet [14] cautioned against the use of
measures reflecting cognitive abilities acquired in early
life, e.g., vocabulary, we intentionally selected a test used
to assess baseline intelligence so it could be contrasted
against a score reflecting disease-related changes. Given
that a change from baseline performance is a diagnostic
criteria for dementia due to AD [7] and early changes are
often in the domain of memory, we sought to detect when
hippocampally based memory markedly differed from
one’s estimated baseline abilities, believing this may be an
early subtle sign of disease. Additionally, tests such as Trails
A and B were chosen as contrasting measures of executive
function. Individuals with AD and MCI often demonstrate
a characteristic dissociation in performance between Trails
A and Trails B. Specifically, Trails A performance generally
remains relatively well-preserved, being dependent on intact
motor speed, visual scanning, and simple attention. On the
other hand, the more challenging Trails B reveals even subtle
executive dysfunction, with its additional demands on work-
ing memory and dual-task performance [37]. Thus, mea-
sures were selected based on their sensitively to
AD-related performance variations, that is, the peaks and
valleys of a cognitive profile occurring early in the disease
process. Certain measures sensitive to AD-related cognitive
changes (e.g., category fluency, digit symbol tasks) were
excluded if they did not have an obvious contrasting task.
For example, Trails A is contrasted to Trails B. This was
done in an effort to minimize the number of measures
needed to estimate variability and support dissemination.

Holtzer et al. [10] and a number of others have examined
the utility of cognitive variability [11,12,20,38]. Although
methods for estimating the scatter or dispersion of
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cognitive test scores vary, previous analyses point toward the
conclusion that variability across test indices is a marker for
brain dysfunction, be it due to increasing dementia severity
[39], mental illness [40], or head injury [41]. Some have
speculated that intra-individual variability is related to
disease-associated disruptions in neural networks and func-
tional connectivity [42], whereas others relate the associa-
tion to reductions in the ability to sustain mental efforts,
especially executive functioning [43].

Our study replicated and expanded previous findings. In
particular, our inclusion of APOE ε4 status and HVL pro-
vides unique insights. Not surprisingly, APOE ε4 status
and HVL predicted conversion in our models. Importantly,
IICV remained a significant predictor of time to conversion
even after accounting for the influence of APOE ε4 status
and HVL. Altogether, IICV provided unique predictive in-
formation.

There were limitations to the study. First, subjects
enrolled in ADNI are predominantly non-Hispanic and
white. In addition, the ADNI sample reflects only those indi-
viduals who were able and willing to have a complete set of
invasive biomarkers measured. Altogether, this limits the
generalizability of findings. Another limitation is that
IICV, by diagnostic definition, would be greater for individ-
uals with MCI, which presents with a greater risk for conver-
sion to AD than CN status. In an attempt to address the
potential confound, we (1) adjusted for baseline diagnosis
and (2) conducted a second analysis, restricted to subjects
with MCI at baseline. Given the low rate of conversion in
the CN sample, it was not possible to examine an exclusively
CN sample. Another potential limitation was our operation-
alization of IICV. We used a dispersion model to compare
multiple domains at one time-point in an attempt to investi-
gate the potential of a clinically relevant marker specific to
AD. This may limit the ability to use the marker in more het-
erogeneous samples where mixed dementia may be com-
mon.

Although validation in other populations and cohorts is
needed to corroborate our findings, IICV could provide a
practical alternative to traditional biomarkers. Many
emerging prevention strategies rely on an assessment of
risk to identify individuals likely to benefit from early inter-
vention, necessitating collection of biomarkers before drug
administration. Consequently, if replicated, the findings
would have a number of research and clinical practice impli-
cations. For example, IICV could offer an alternative or
adjunct to traditional biomarkers in settings and groups not
amenable to LPs and neuroimaging. In rural settings, a
cognitive marker could be widely disseminated with mini-
mal time and equipment demands. Furthermore, there are
cultural groups who mistrust medical procedures based on
historical maltreatment and discrimination, for example, Af-
rican Americans [44], for whom cognitive testing may be
more acceptable than the collection of traditional bio-
markers, including LP. Overall, IICV could be considered
an alternative to relying on more invasive biomarkers to
identify target populations and a low-cost, easily adminis-
tered means to assess risk for incident MCI and AD, allow-
ing for a broader ability to identify at-risk individuals than
traditional biomarkers.
5. Conclusions

Although these findings require replication and further
validation, this study provides support for the use of IICV
as a novel predictor of incident MCI and AD and practical
alternative to traditional AD biomarkers. IICV is particularly
appealing in that it could be widely disseminated with min-
imal time and equipment demands.
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RESEARCH IN CONTEXT

1. Systematic review: A review of the literature was
completed by searching PUBMED, PsychInfo, and
MEDLINE, focusing specifically on previously pub-
lished articles. APOE ε4 allele status and hippocam-
pal volume loss (HVL) are well-established
predictors of Alzheimer’s disease (AD) risk. While
preliminary, the published evidence suggests that
intra-individual cognitive variability (IICV) may
predict AD risk. One challenge in interpreting the
literature is the divergent methods of estimating
IICV.

2. Interpretation: The results of this study suggest that
cognitive variability in neuropsychological test
scores, derived from a single testing session and
quantified as the intra-individual difference in
cognitive test scores was predictive of incident mild
cognitive impairment (MCI) or AD.

3. Future directions: This study gives support for
further exploration of IICV as a noninvasive, easily
obtained cognitive marker. Additional research is
needed to verify the results, but the advent of a cogni-
tive marker of disease risk could facilitate earlier
identification of at-risk individuals.
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